Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 689
Filtrar
1.
J Cardiothorac Surg ; 17(1): 169, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794624

RESUMO

BACKGROUND: Acute type A aortic dissection (ATAAD) is a fatal disease and requires emergency surgery. In particular, it is known that mortality is high when a coronary artery is involved. However, the degree of myocardial damage of the coronary acute artery involvement (ACI) varies and may or may not increase creatine kinase muscle and brain isoenzyme (CK-MB). It is unknown how CK-MB elevation affects the surgical outcome. This study compared the surgical results between the two groups of ACI with or without CK-MB elevation. METHODS: Among 348 patients who underwent an emergency operation for acute type A aortic dissection, there were 28 (8.0%) patients complicated by ACI and underwent additional coronary artery bypass grafting. We divided 26 of those patients into two groups; the MI group ( with CK-MB elevation) and the NMI group (without CK-MB elevation), and compared both groups. RESULTS: Of the 26, sixteen were in the MI group, and ten were in the NMI group. The average CK-MB in the MI group was 225.5 IU/L, and that in the NMI group was 13.5 IU/L. The mean time from onset to surgery was 248 min in the MI group and 250 min in the NMI group. There was statistical significance in mortality ( 69% vs. 13%, p = 0.03). There was no significance in major complications (ICU days, reintubation, reoperation, pneumonia, sepsis). CONCLUSIONS: Acute coronary artery involvement was associated with 8.0% of patients with ATAAD, and 62% had myocardial ischemia with CK-MB elevation. The MI group had significantly higher mortality than the NMI group. It is crucial for cases with suspected ACI to obtain coronary perfusion as soon as possible to prevent CK-MB from elevating.


Assuntos
Dissecção Aórtica , Vasos Coronários , Creatina Quinase Forma MB , Dissecção Aórtica/enzimologia , Dissecção Aórtica/cirurgia , Ponte de Artéria Coronária , Vasos Coronários/enzimologia , Vasos Coronários/cirurgia , Creatina Quinase Forma MB/metabolismo , Humanos
2.
Am J Physiol Heart Circ Physiol ; 321(5): H933-H939, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597185

RESUMO

CD4+ T cells expressing choline acetyltransferase (ChAT) have recently been shown to cause a drop in systemic blood pressure when infused into mice. The aim of this study was to determine if ChAT-expressing T cells could regulate coronary vascular reactivity. Preconstricted segments of epicardial and intramyocardial porcine coronary arteries relaxed in response to Jurkat T cells (JT) that overexpressed ChAT (JTChAT cells). The efficacy of the JTChAT cells was similar in epicardial and intramyocardial vessels with a maximum dilator response to 3 × 105 cells/mL of 38.0 ± 6.7% and 38.7 ± 7.25%, respectively. In contrast, nontransfected JT cells elicited a weak dilator response, followed by a weak contraction. The response of JTChAT cells was dependent on the presence of the endothelial cells. In addition, the response could be significantly reduced by Nω-nitro-l-arginine methyl ester (l-NAME) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) in the presence of indomethacin. JTChAT cells, but not JT cells, increased the expression of phosphorylated endothelial nitric oxide synthase (eNOS). JTChAT cells contained significantly greater levels of acetylcholine compared with JT cells; however, the nonselective muscarinic antagonist atropine and the M1 receptor antagonist pirenzepine both failed to block the dilator effect of JTChAT cells. Exogenously added acetylcholine induced only a weak relaxation (∼10%) at low concentrations, which became a contractile response at higher concentrations. These data illustrate the capacity for cells that express ChAT to regulate coronary vascular reactivity, via mechanisms that are dependent on interaction with the endothelium and in part mediated by the release of nitric oxide.NEW & NOTEWORTHY This study shows ChAT-expressing T cells can induce vasodilation of the blood vessel in the coronary circulation and that this effect relies on a direct interaction between T cells and the coronary vascular endothelium. The study establishes a potential immunomodulatory role for T cells in the coronary circulation. The present findings offer an additional possibility that a deficiency of ChAT-expressing T cells could contribute to reduced coronary blood flow and ischemic events in the myocardium.


Assuntos
Comunicação Celular , Colina O-Acetiltransferase/metabolismo , Vasos Coronários/enzimologia , Linfócitos T/enzimologia , Vasodilatação , Acetilcolina/metabolismo , Animais , Colina O-Acetiltransferase/genética , Vasos Coronários/imunologia , Células Endoteliais/enzimologia , Células Endoteliais/imunologia , Humanos , Células Jurkat , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Sus scrofa , Linfócitos T/imunologia
3.
Eur J Pharmacol ; 896: 173917, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529727

RESUMO

In order to gain insight into the regulation of vascular tone by mitochondria, the effects of mitochondrial complex III inhibitors on contractile responses in porcine isolated coronary arteries were investigated. Segments of porcine coronary arteries were set up for isometric tension recording and concentration response curves to contractile agents were carried out in the absence or presence of the complex III inhibitors antimycin A or myxothiazol. Activity of AMP kinase was determined by measuring changes in phosphorylation of AMP kinase at Thr172. Pre-incubation with 10 µM antimycin A (Qi site inhibitor), or myxothiazol (Qo site inhibitor) led to inhibition of the contraction to the thromboxane receptor agonist U46619. Similar effects were seen on contractile responses to extracellular calcium, and the L-type calcium channel opener BAY K 8644, suggesting that both antimycin A and myxothiazol inhibit calcium-dependent contractions. The inhibitory effect of antimycin A was still seen in the absence of extracellular calcium, indicating an additional effect on a calcium independent pathway. The AMP kinase inhibitor dorsomorphin (10 µM) prevented the inhibitory of antimycin A but not myxothiazol. Furthermore, antimycin A increased the phosphorylation of AMP kinase, indicating an increase in activity, suggesting that antimycin A also acts through this pathway. These data indicate that inhibition of complex III attenuates contractile responses through inhibition of calcium influx. However, inhibition of the Qi site can also inhibit the contractile response through activation of AMP kinase.


Assuntos
Antimicina A/farmacologia , Vasos Coronários/efeitos dos fármacos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sinalização do Cálcio , Vasos Coronários/enzimologia , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Técnicas In Vitro , Masculino , Metacrilatos/farmacologia , Mitocôndrias/enzimologia , Fosforilação , Sus scrofa , Tiazóis/farmacologia
4.
Microvasc Res ; 135: 104133, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33428883

RESUMO

Diabetes-induced coronary endothelial cell (CEC) dysfunction contributes to diabetic heart diseases. Angiotensin II (Ang II), a vasoactive hormone, is upregulated in diabetes, and is reported to increase oxidative stress in CECs. 4-hydroxy-2-nonenal (4HNE), a key lipid peroxidation product, causes cellular dysfunction by forming adducts with proteins. By detoxifying 4HNE, aldehyde dehydrogenase (ALDH) 2 reduces 4HNE mediated proteotoxicity and confers cytoprotection. Thus, we hypothesize that ALDH2 improves Ang II-mediated defective CEC angiogenesis by decreasing 4HNE-mediated cytotoxicity. To test our hypothesis, we treated the cultured mouse CECs (MCECs) with Ang II (0.1, 1 and 10 µM) for 2, 4 and 6 h. Next, we treated MCECs with Alda-1 (10 µM), an ALDH2 activator or disulfiram (2.5 µM)/ALDH2 siRNA (1.25 nM), the ALDH2 inhibitors, or blockers of angiotensin II type-1 and 2 receptors i.e. Losartan and PD0123319 respectively before challenging MCECs with 10 µM Ang II. We found that 10 µM Ang II decreased tube formation in MCECs with in vitro angiogenesis assay (P < .0005 vs control). 10 µM Ang II downregulated the levels of vascular endothelial growth factor receptor 1 (VEGFR1) (p < .005 for mRNA and P < .05 for protein) and VEGFR2 (p < .05 for mRNA and P < .005 for protein) as well as upregulated the levels of angiotensin II type-2 receptor (AT2R) (p < .05 for mRNA and P < .005 for protein) and 4HNE-adducts (P < .05 for protein) in cultured MCECs, compared to controls. ALDH2 inhibition with disulfiram/ALDH2 siRNA exacerbated 10 µM Ang II-induced decrease in coronary angiogenesis (P < .005) by decreasing the levels of VEGFR1 (P < .005 for mRNA and P < .05 for protein) and VEGFR2 (P < .05 for both mRNA and protein) and increasing the levels of AT2R (P < .05 for both mRNA and protein) and 4HNE-adducts (P < .05 for protein) relative to Ang II alone. AT2R inhibition per se improved angiogenesis in MCECs. Additionally, enhancing ALDH2 activity with Alda 1 rescued Ang II-induced decrease in angiogenesis by increasing the levels of VEGFR1, VEGFR2 and decreasing the levels of AT2R. In summary, ALDH2 can be an important target in reducing 4HNE-induced proteotoxicity and improving angiogenesis in MCECs. Finally, we conclude ALDH2 activation can be a therapeutic strategy to improve coronary angiogenesis to ameliorate cardiometabolic diseases.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Inibidores da Angiogênese/farmacologia , Angiotensina II/farmacologia , Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Aldeídos/metabolismo , Linhagem Celular , Vasos Coronários/enzimologia , Células Endoteliais/enzimologia , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 320(1): H458-H468, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095054

RESUMO

Coronary artery spasm (CAS) is an intense vasoconstriction of coronary arteries that causes total or subtotal vessel occlusion. The cardioprotective effect of sirtuin-1 (SIRT1) has been extensively highlighted in coronary artery diseases. The aims within this study include the investigation of the molecular mechanism by which SIRT1 alleviates CAS. SIRT1 expression was first determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis in an endothelin-1 (ET-1)-induced rat CAS model. Interaction among SIRT1, nuclear factor-kappaB (NF-κB), myosin light chain kinase/myosin light chain-2 (MLCK/MLC2), and ET-1 was analyzed using luciferase reporter assay, RT-qPCR, and Western blot analysis. After ectopic expression and depletion experiments in vascular smooth muscle cells (VSMCs), contraction and proliferation of VSMCs and expression of contraction-related proteins (α-SMA, calponin, and SM22α) were measured by collagen gel contraction, 5-ethynyl-2'-deoxyuridine (EdU) assay, RT-qPCR, and Western blot analysis. The obtained results showed that SIRT1 expression was reduced in rat CAS models. However, overexpression of SIRT1 inhibited the contraction and proliferation of VSMCs in vitro. Mechanistic investigation indicated that SIRT1 inhibited NF-κB expression through deacetylation. Moreover, NF-κB could activate the MLCK/MLC2 pathway and upregulate ET-1 expression by binding to their promoter regions, thus inducing VSMC contraction and proliferation in vitro. In vivo experimental results also revealed that SIRT1 alleviated CAS through regulation of the NF-κB/MLCK/MLC2/ET-1 signaling axis. Collectively, our data suggested that SIRT1 could mediate the deacetylation of NF-κB, disrupt the MLCK/MLC2 pathway, and inhibit the expression of ET-1 to relieve CAS, providing a theoretical basis for the prospect of CAS treatment and prevention.NEW & NOTEWORTHY Rat coronary artery spasm models exhibit reduced expression of SIRT1. Overexpression of SIRT1 inhibits contraction and proliferation of VSMCs. SIRT1 inhibits NF-κB through deacetylation to modulate VSMC contraction and proliferation. NF-κB activates the MLCK/MLC2 pathway. NF-κB upregulates ET-1 to modulate VSMC contraction and proliferation.


Assuntos
Miosinas Cardíacas/metabolismo , Vasoespasmo Coronário/prevenção & controle , Endotelina-1/metabolismo , Músculo Liso Vascular/enzimologia , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Vasoconstrição , Acetilação , Animais , Proliferação de Células , Forma Celular , Células Cultivadas , Vasoespasmo Coronário/enzimologia , Vasoespasmo Coronário/genética , Vasoespasmo Coronário/fisiopatologia , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Masculino , Músculo Liso Vascular/fisiopatologia , NF-kappa B/genética , Ratos Nus , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1/genética
6.
Eur J Pharmacol ; 891: 173706, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33152337

RESUMO

Small molecular chemicals targeting individual subtype of G proteins including Gs, Gi/o and Gq has been lacking, except for pertussis toxin being an established selective peptide inhibitor of the Gi/o protein. Recently, a cyclic depsipeptide compound YM-254890 isolated from culture broth of Chromobacterium sp. was reported as a selective inhibitor for the Gq protein by blocking GDP exchange of GTP on the α subunit of Gq complex. However, functional selectivity of YM-254890 towards various G proteins was not fully characterized, primarily due to its restricted availability before 2017. Here, using human coronary artery endothelial cells as a model, we performed a systemic pharmacological evaluation on the functional selectivity of YM-254890 on multiple G protein-mediated receptor signaling. First, we confirmed that YM-254890, at 30 nM, abolished UTP-activated P2Y2 receptor-mediated Ca2+ signaling and ERK1/2 phosphorylation, indicating its potent inhibition on the Gq protein. However, we unexpectedly found that YM-254890 also significantly suppressed cAMP elevation and ERK1/2 phosphorylation induced by multiple Gs-coupled receptors including ß2-adrenegic, adenosine A2 and PGI2 receptors. Surprisingly, although YM-254890 had no impact on CXCR4/Gi/o protein-mediated suppression of cAMP production, it abolished ERK1/2 activation. Further, no cellular toxicity was observed for YM-254890, and it neither affected A23187- or thapsigargin-induced Ca2+ signaling, nor forskolin-induced cAMP elevation and growth factor-induced MAPK signaling. We conclude that YM-254890 is not a selective inhibitor for Gq protein; instead, it acts as a broad-spectrum inhibitor for Gq and Gs proteins and exhibits a biased inhibition on Gi/o signaling, without affecting non-GPCR-mediated cellular signaling.


Assuntos
Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Subunidades alfa de Proteínas de Ligação ao GTP/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Sinalização do Cálcio , Células Cultivadas , Vasos Coronários/enzimologia , AMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
7.
J Ethnopharmacol ; 269: 113693, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33326818

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Asphodelus tenuifolius Cav. (Asphodelaceae), a wild, terrestrial, annual stemless herb, is widely used in traditional medicine for the treatment of hypertension, diabetes, atherosclerosis and circulatory problems. A previous research study from our laboratory revealed that A. tenuifolius has beneficial effects in reducing blood pressure and improves aortic endothelial dysfunction in chronically glucose fed rats. Despite the fact that A. tenuifolius reduces blood pressure and improves endothelial function in vivo, there are no detailed studies about its possible mechanism of action. AIM OF THE STUDY: This study was designed to provide pharmacological basis and mechanism of action for the traditional use of A. tenuifolius in hypertension and circulatory problems. We explored the vasorelaxant effect of A. tenuifolius and its underlying vasorelaxation mechanism in porcine coronary artery rings. MATERIALS AND METHODS: Aqueous methanolic crude extract of A. tenuifolius was prepared by maceration process and then activity guided fractionation was carried out by using different polarity based solvents. Phytochemical studies were carried out using LC-DAD-MS. Segments of porcine distal coronary artery were set up in a wire myograph for isometric force measurements. Extract/fractions of A. tenuifolius seeds were tested for vasodilator activity by measurement of changes in tone after pre-contraction with the thromboxane mimetic U46619 in the presence or absence of inhibitors of intracellular signaling cascades. RESULTS: Crude extract/fractions of A. tenuifolius produced dose dependent endothelium independent vasorelaxant response in coronary rings, whereas, the butanol fraction of A. tenuifolius (BS-AT) produced the largest relaxation response with 100% relaxation at 1 mg/ml, therefore the mechanism of relaxation of this fraction was determined. The relaxation to BS-AT was unaffected by removal of the endothelium, pre-contraction with KCl, or the presence of the non-selective potassium channel blocker tetraethylammonium, indicating that the relaxation was endothelium-independent, and does not involve activation of potassium channels. BS-AT (1 mg/ml) inhibited the contractile response to calcium,the L-type calcium channel activator BAY K8664,and ionomycin, indicating that it inhibits calcium-induced contractions. The relaxation response to BS-AT was attenuated in the absence of extracellular calcium. However, relaxations to BS-AT were also reduced after deletion of calcium from intracellular stores with cyclopiazonic acid. Incubation with 1 mg/ml BS-AT also inhibited phosphorylation of myosin light chains in homogenates of coronary artery. CONCLUSION: The butanol extract of Asphodelus tenuifolius produces a large endothelium-independent relaxation of the porcine coronary artery through inhibition of calcium-induced contractions. The effect appears to be downstream of calcium influx, possibly through inhibition of myosin light chain kinase. This study supports previous studies demonstrating that A. tenuifolius reduces blood pressure. Future studies will aim to determine the active compounds underlying this response.


Assuntos
Asphodelaceae , Vasos Coronários/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Extratos Vegetais/farmacologia , Vasodilatadores/farmacologia , Animais , Vasos Coronários/enzimologia , Relação Dose-Resposta a Droga , Endotélio Vascular/enzimologia , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Técnicas de Cultura de Órgãos , Extratos Vegetais/isolamento & purificação , Suínos , Vasodilatadores/isolamento & purificação
8.
J Ethnopharmacol ; 267: 113462, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058924

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Tongmai Yangxin pill (TMYX) is derived from the Zhigancao decoction recorded in Shang han lun by Zhang Zhongjing during the Han dynasty. TMYX is used for the clinical treatment of chest pain, heartache, and qi-yin-deficiency coronary heart disease. Previous studies have confirmed that TMYX can improve vascular endothelial function in patients with coronary heart disease by upregulating nitric oxide activity and then regulating vascular tension. Whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels remains unclear. AIM OF THE STUDY: This study aimed to reveal whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels. The underlying cAMP/PKA and NO-cGMP signaling pathway-dependent mechanism is also explored. MATERIALS AND METHODS: The left anterior descending coronary arteries of healthy adult male SD rats were ligated to establish the NR model. TMYX (4.0 g/kg) was orally administered throughout the experiment. Cardiac function was measured through echocardiography. Thioflavin S, Evans Blue, and TTC staining were used to evaluate the NR and ischemic areas. Pathological changes in the myocardium were assessed by hematoxylin-eosin staining. An automated biochemical analyzer and kit were used to detect the activities of myocardial enzymes and myocardial oxidants, including CK, CK-MB, LDH, reactive oxygen species, superoxide dismutase, malonaldehyde, and NO. The expression levels of genes and proteins related to the cAMP/PKA and NO/cGMP signaling pathways were detected via real-time fluorescence quantitative PCR and Western blot analysis, respectively. A microvascular tension sensor was used to detect coronary artery diastolic function in vitro. RESULTS: TMYX elevated the EF, FS, LVOT peak, LVPWd and LVPWs values, decreased the LVIDd, LVIDs, LV-mass, IVSd, and LV Vols values, demonstrating cardio-protective effects, and reduced the NR and ischemic areas. Pathological staining showed that TMYX could significantly reduce inflammatory cell number and interstitial edema. The activities of CK, LDH, and MDA were reduced, NO activity was increased, and oxidative stress was suppressed after treatment with TMYX. TMYX not only enhanced the expression of Gs-α, AC, PKA, and eNOS but also increased the expression of sGC and PKG. Furthermore, TMYX treatment significantly decreased ROCK expression. We further showed that TMYX (25-200 mg/mL) relaxed isolated coronary microvessels. CONCLUSIONS: TMYX attenuates myocardial NR after ischemia and reperfusion by activating the cAMP/PKA and NO/cGMP signaling pathways, further upregulating NO activity and relaxing coronary microvessels.


Assuntos
Vasos Coronários/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Endotélio Vascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fenômeno de não Refluxo/tratamento farmacológico , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Masculino , Microcirculação/efeitos dos fármacos , Miocárdio/enzimologia , Miocárdio/patologia , Fenômeno de não Refluxo/enzimologia , Fenômeno de não Refluxo/patologia , Fenômeno de não Refluxo/fisiopatologia , Ratos Sprague-Dawley , Transdução de Sinais
9.
Microvasc Res ; 133: 104078, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980388

RESUMO

The present study assessed the impact of impaired tetrahydrobiopterin (BH4) production on vasoreactivity from conduit and small arteries along the vascular tree as seen during aging. For this purpose, the mutant hyperphenylalaninemic mouse (hph-1) was used. This model is reported to be deficient in GTP cyclohydrolase I, a rate limiting enzyme in BH4 biosynthesis. BH4 is a key regulator of vascular homeostasis by regulating the nitric oxide synthase 3 (NOS3) activity. In GTP-CH deficient mice, the aortic BH4 levels were decreased, by -77% in 12 week-middle-aged mice (young) and by -83% in 35-45 week-middle-aged mice (middle-aged). In young hph-1, the mesenteric artery ability to respond to flow was slightly reduced by 9%. Aging induced huge modification in many vascular functions. In middle-aged hph-1, we observed a decrease in aortic cGMP levels, biomarker of NO availability (-46%), in flow-mediated vasodilation of mesenteric artery (-31%), in coronary hyperemia response measured in isolated heart following transient ischemia (-27%) and in cutaneous microcirculation dilation in response to acetylcholine assessed in vivo by laser-doppler technic (-69%). In parallel, the endothelium-dependent relaxation in response to acetylcholine in conduit blood vessel, measured on isolated aorta rings, was unchanged in hph-1 mice whatever the age. Our findings demonstrate that in middle-aged GTP-CH depleted mice, the reduction of BH4 was characterized by an alteration of microcirculation dilatory properties observed in various parts of the vascular tree. Large conduit blood vessels vasoreactivity, ie aorta, was unaltered even in middle-aged mice emphasizing the main BH4-deletion impact on the microcirculation.


Assuntos
GTP Cicloidrolase/deficiência , Microcirculação , Microvasos/enzimologia , Fenilcetonúrias/enzimologia , Pele/irrigação sanguínea , Vasodilatação , Fatores Etários , Animais , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , /metabolismo , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , GTP Cicloidrolase/genética , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/fisiopatologia , Fenilcetonúrias/genética , Fenilcetonúrias/fisiopatologia
10.
Arterioscler Thromb Vasc Biol ; 41(1): 446-457, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232201

RESUMO

OBJECTIVE: Coronary artery disease (CAD) is associated with a compensatory switch in mechanism of flow-mediated dilation (FMD) from nitric oxide (NO) to H2O2. The underlying mechanism responsible for the pathological shift is not well understood, and recent reports directly implicate telomerase and indirectly support a role for autophagy. We hypothesize that autophagy is critical for shear stress-induced release of NO and is a crucial component of for the pathway by which telomerase regulates FMD. Approach and Results: Human left ventricular, atrial, and adipose resistance arterioles were collected for videomicroscopy and immunoblotting. FMD and autophagic flux were measured in arterioles treated with autophagy modulators alone, and in tandem with telomerase-activity modulators. LC3B II/I was higher in left ventricular tissue from patients with CAD compared with non-CAD (2.8±0.2 versus 1.0±0.2-fold change; P<0.05), although p62 was similar between groups. Shear stress increased Lysotracker fluorescence in non-CAD arterioles, with no effect in CAD arterioles. Inhibition of autophagy in non-CAD arterioles induced a switch from NO to H2O2, while activation of autophagy restored NO-mediated vasodilation in CAD arterioles. In the presence of an autophagy activator, telomerase inhibitor prevented the expected switch (Control: 82±4%; NG-Nitro-l-arginine methyl ester: 36±5%; polyethylene glycol catalase: 80±3). Telomerase activation was unable to restore NO-mediated FMD in the presence of autophagy inhibition in CAD arterioles (control: 72±7%; NG-Nitro-l-arginine methyl ester: 79±7%; polyethylene glycol catalase: 38±9%). CONCLUSIONS: We provide novel evidence that autophagy is responsible for the pathological switch in dilator mechanism in CAD arterioles, demonstrating that autophagy acts downstream of telomerase as a common denominator in determining the mechanism of FMD.


Assuntos
Tecido Adiposo/irrigação sanguínea , Arteríolas/enzimologia , Autofagia , Doença da Artéria Coronariana/enzimologia , Vasos Coronários/enzimologia , Telomerase/metabolismo , Vasodilatação , Adulto , Idoso , Arteríolas/patologia , Arteríolas/fisiopatologia , Estudos de Casos e Controles , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Lisossomos/enzimologia , Lisossomos/patologia , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Transdução de Sinais
11.
Vascul Pharmacol ; 131: 106762, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32585188

RESUMO

4-hydroxynonenal (4HNE) is a reactive aldehyde, which is involved in oxidative stress associated pathogenesis. The cellular toxicity of 4HNE is mitigated by aldehyde dehydrogenase (ALDH) 2. Thus, we hypothesize that ALDH2 inhibition exacerbates 4HNE-induced decrease in coronary endothelial cell (EC) migration in vitro. To test our hypothesis, we pharmacologically inhibited ALDH2 in cultured mouse coronary ECs (MCECs) by disulfiram (DSF) (2.5 µM) before challenging the cells with different doses of 4HNE (25, 50 and 75 µM) for 4, 12, 16 and 24 h. We evaluated MCEC migration by scratch wound migration assay. 4HNE attenuated MCEC migration significantly relative to control (P < .05), which was exacerbated with DSF pretreatment (P < .05). DSF pretreatment exacerbated 4HNE-induced decrease in ALDH2 activity in MCECs. Next, we showed that 75 µM 4HNE significantly decreased the intracellular mRNA levels of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), focal adhesion kinase (FAK) and other promigratory genes compared to control, which were further decreased by DSF pretreatment. 75 µM 4HNE also decreased the protein levels of VEGFR2, FAK, phospho-FAK, Src and paxillin in MCECs. Thus, we conclude that ALDH2 inhibition potentiates 4HNE-induced decrease in MCECs migration in vitro.


Assuntos
Aldeído-Desidrogenase Mitocondrial/antagonistas & inibidores , Aldeídos/farmacologia , Movimento Celular/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Linhagem Celular , Vasos Coronários/enzimologia , Células Endoteliais/enzimologia , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Camundongos , Paxilina/metabolismo , Fosforilação , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
12.
J Cardiovasc Pharmacol ; 74(4): 315-323, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31425381

RESUMO

The incidences of heart failure with preserved ejection fraction (HFpEF) are increased in aged populations as well as diabetes and hypertension. Coronary microvascular dysfunction has contributed to the development of HFpEF. Endothelial cells (ECs) depend on glycolysis rather than oxidative phosphorylation for generating adenosine triphosphate to maintain vascular homeostasis. Glycolytic metabolism has a critical role in the process of angiogenesis, because ECs rely on the energy produced predominantly from glycolysis for migration and proliferation. Sirtuin 3 (SIRT3) is found predominantly in mitochondria and its expression declines progressively with aging, diabetes, obesity, and hypertension. Emerging evidence indicates that endothelial SIRT3 regulates a metabolic switch between glycolysis and mitochondrial respiration. SIRT3 deficiency in EC resulted in a significant decrease in glycolysis, whereas, it exhibited higher mitochondrial respiration and more prominent production of reactive oxygen species. SIRT3 deficiency also displayed striking increases in acetylation of p53, EC apoptosis, and senescence. Impairment of SIRT3-mediated EC metabolism may lead to a disruption of EC/pericyte/cardiomyocyte communications and coronary microvascular rarefaction, which promotes cardiomyocyte hypoxia, Titin-based cardiomyocyte stiffness, and myocardial fibrosis, thus leading to a diastolic dysfunction and HFpEF. This review summarizes current knowledge of SIRT3 in EC metabolic reprograming, EC/pericyte interactions, coronary microvascular dysfunction, and HFpEF.


Assuntos
Vasos Coronários/enzimologia , Células Endoteliais/enzimologia , Metabolismo Energético , Insuficiência Cardíaca/enzimologia , Sirtuína 3/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Animais , Apoptose , Proliferação de Células , Conectina/metabolismo , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Células Endoteliais/patologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Neovascularização Fisiológica , Transdução de Sinais
13.
Nutr Metab Cardiovasc Dis ; 29(1): 97-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497927

RESUMO

BACKGROUND AND AIM: Caloric restriction (CR) improves insulin sensitivity and is one of the dietetic strategies most commonly used to enlarge life and to prevent aging-induced cardiovascular alterations. The aim of this study was to analyze the possible beneficial effects of caloric restriction (CR) preventing the aging-induced insulin resistance in the heart of male Wistar rats. METHODS AND RESULTS: Three experimental groups were used: 3 months old rats (3m), 24 months old rats (24m) and 24 months old rats subjected to 20% CR during their three last months of life (24m-CR). After sacrifice hearts were mounted in a perfusion system (Langendorff) and heart function in basal conditions and in response to accumulative doses of insulin (10-9-10-7 M), in the presence or absence of Wortmannin (10-6 M), was recorded. CR did not attenuate the aging-induced decrease in coronary artery vasodilation in response to insulin administration, but it prevented the aging-induced downregulation of cardiac contractility (dp/dt) through activation of the PI3K/Akt intracellular pathway. Insulin stimulated in a greater extent the PI3K/Akt pathway vs the activation of the MAPK pathway and increased the protein expression of IR, GLUT-4 and eNOS in the hearts of 3m and 24m-CR rats, but not in the hearts of 24m rats. Furthermore, CR prevented the aging induced increase in endothelin-1 protein expression in myocardial tissue. CONCLUSION: In conclusion CR partially improves cardiac insulin sensitivity and prevents the aging induced decrease in myocardial contractility in response to insulin administration through activation of PI3K/Akt pathway.


Assuntos
Restrição Calórica , Coração/efeitos dos fármacos , Resistência à Insulina , Insulina/farmacologia , Miocárdio/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores Etários , Envelhecimento , Fenômenos Fisiológicos da Nutrição Animal , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Endotelina-1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Coração/fisiopatologia , Preparação de Coração Isolado , Masculino , Contração Miocárdica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
14.
Microvasc Res ; 122: 34-40, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30439484

RESUMO

OBJECTIVE: Freshly isolated endothelial cells from both conduit arteries and microvasculature were used to test the hypothesis that eNOS protein content and nitric oxide production in coronary endothelial cells increases with vessel radius. METHODS: Porcine hearts were obtained from a local abattoir. Large and small arteries as well as arterioles were dissected free of myocardium and homogenized as whole vessels. Additionally, endothelial cells were isolated from both conduit arteries and left ventricular myocardium by tissue digestion with collagenase, followed by endothelial cell isolation using biotinylated-anti-CD31 and streptavidin-coated paramagnetic beads. Purity of isolated endothelial cells was confirmed by immunofluorescence and immunoblot. RESULTS: In whole vessel lysate, immunoblot analysis revealed that protein content for eNOS was greater in arterioles compared to small and large arteries. Nitric oxide metabolites (nitrite plus nitrate; NOx) levels measured from whole vessel lysate decreased as vessel size increased, with both arterioles and small arteries displaying significantly greater NOx content than conduit. Consistent with our hypothesis, both eNOS protein level and NOx were significantly greater in endothelial cells isolated from conduit arteries compared with those from coronary microvasculature. Furthermore, confocal microscopy revealed that eNOS protein was present in all conduit and microvascular endothelial cells, although eNOS staining was less intense in microvascular cells than those of conduit artery. CONCLUSIONS: These findings demonstrate increased eNOS protein and NOx content in endothelial cells of conduit arteries compared with the microcirculation and underscore the importance of comparing endothelial-specific molecules in freshly isolated endothelial cells, rather than whole lysate of different sized vessels.


Assuntos
Arteríolas/enzimologia , Vasos Coronários/enzimologia , Células Endoteliais/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animais , Arteríolas/citologia , Vasos Coronários/citologia , Nitratos/metabolismo , Nitritos/metabolismo , Sus scrofa
15.
Cardiovasc Res ; 115(1): 130-144, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939224

RESUMO

Aims: Regulation of vascular tone by 3',5'-cyclic adenosine monophosphate (cAMP) involves many effectors including the large conductance, Ca2+-activated, K+ (BKCa) channels. In arteries, cAMP is mainly hydrolyzed by type 3 and 4 phosphodiesterases (PDE3, PDE4). Here, we examined the specific contribution of BKCa channels to tone regulation by these PDEs in rat coronary arteries, and how this is altered in heart failure (HF). Methods and results: Concomitant application of PDE3 (cilostamide) and PDE4 (Ro-20-1724) inhibitors increased BKCa unitary channel activity in isolated myocytes from rat coronary arteries. Myography was conducted in isolated, U46619-contracted coronary arteries. Cilostamide (Cil) or Ro-20-1724 induced a vasorelaxation that was greatly reduced by iberiotoxin (IBTX), a BKCa channel blocker. Ro-20-1724 and Cil potentiated the relaxation induced by the ß-adrenergic agonist isoprenaline (ISO) or the adenylyl cyclase activator L-858051 (L85). IBTX abolished the effect of PDE inhibitors on ISO but did not on L85. In coronary arteries from rats with HF induced by aortic stenosis, contractility and response to acetylcholine were dramatically reduced compared with arteries from sham rats, but relaxation to PDE inhibitors was retained. Interestingly, however, IBTX had no effect on Ro-20-1724- and Cil-induced vasorelaxations in HF. Expression of the BKCa channel α-subunit, of a 98 kDa PDE3A and of a 80 kDa PDE4D were lower in HF compared with sham coronary arteries, while that of a 70 kDa PDE4B was increased. Proximity ligation assays demonstrated that PDE3 and PDE4 were localized in the vicinity of the channel. Conclusion: BKCa channels mediate the relaxation of coronary artery induced by PDE3 and PDE4 inhibition. This is achieved by co-localization of both PDEs with BKCa channels, enabling tight control of cAMP available for channel opening. Contribution of the channel is prominent at rest and on ß-adrenergic stimulation. This coupling is lost in HF.


Assuntos
Vasos Coronários/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Insuficiência Cardíaca/enzimologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Vasodilatação , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Insuficiência Cardíaca/fisiopatologia , Ativação do Canal Iônico , Masculino , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Ratos Wistar , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
16.
Nutr Metab Cardiovasc Dis ; 28(11): 1188-1195, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30143409

RESUMO

BACKGROUND AND AIMS: Several studies propose that (-)-epicatechin, a flavonol present in high concentration in the cocoa, has cardioprotective effects. This study aimed to evaluate the impact of (-)-epicatechin on the development of dilated cardiomyopathy in a δ sarcoglycan null mouse model. METHODS AND RESULTS: δ Sarcoglycan null mice were treated for 15 days with (-)-epicatechin. Histological and morphometric analysis of the hearts treated mutant mice showed significant reduction of the vasoconstrictions in the coronary arteries as well as fewer areas with fibrosis and a reduction in the loss of the ventricular wall. On the contrary, it was observed a thickening of this region. By Western blot analysis, it was shown, and increment in the phosphorylation level of eNOS and PI3K/AKT/mTOR/p70S6K proteins in the heart of the (-)-epicatechin treated animals. On the other hand, we observed a significantly decreased level of the atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) heart failure markers. CONCLUSION: All the results indicate that (-)-epicatechin has the potential to prevent the development of dilated cardiomyopathy of genetic origin and encourages the use of this flavonol as a pharmacological therapy for dilated cardiomyopathy and heart failure diseases.


Assuntos
Cardiomiopatia Dilatada/prevenção & controle , Catequina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Sarcoglicanas/deficiência , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fator Natriurético Atrial/metabolismo , Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Fibrose , Masculino , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sarcoglicanas/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Vasoconstrição/efeitos dos fármacos
17.
Basic Res Cardiol ; 113(4): 23, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29744594

RESUMO

Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregulated following cardiac microvascular IR injury, and its level was positively correlated with microvascular collapse, endothelial cellular apoptosis and mitochondrial damage. However, NR4A1-knockout mice exhibited resistance against the acute microvascular injury and mitochondrial dysfunction compared with the wild-type mice. Functional studies illustrated that IR injury increased NR4A1 expression, which activated serine/threonine kinase casein kinase2 α (CK2α). CK2α promoted phosphorylation of mitochondrial fission factor (Mff) and FUN14 domain-containing 1 (FUNDC1). Phosphorylated activation of Mff enhanced the cytoplasmic translocation of Drp1 to the mitochondria, leading to fatal mitochondrial fission. Excessive fission disrupted mitochondrial function and structure, ultimately triggering mitochondrial apoptosis. In addition, phosphorylated inactivation of FUNDC1 failed to launch the protective mitophagy process, resulting in the accumulation of damaged mitochondria and endothelial apoptosis. By facilitating Mff-mediated mitochondrial fission and FUNDC1-required mitophagy, NR4A1 disturbed mitochondrial homeostasis, enhanced endothelial apoptosis and provoked microvascular dysfunction. In summary, our data illustrated that NR4A1 serves as a novel culprit factor in cardiac microvascular IR injury that operates through synchronous elevation of fission and suppression of mitophagy. Novel therapeutic strategies targeting the balance among NR4A1, fission and mitophagy might provide survival advantage to microvasculature following IR stress.


Assuntos
Caseína Quinase II/metabolismo , Vasos Coronários/enzimologia , Proteínas de Membrana/metabolismo , Microvasos/enzimologia , Mitocôndrias Cardíacas/enzimologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia , Traumatismo por Reperfusão Miocárdica/enzimologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Apoptose , Permeabilidade Capilar , Caseína Quinase II/genética , Células Cultivadas , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Dinaminas/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Predisposição Genética para Doença , Masculino , Proteínas de Membrana/genética , Camundongos Knockout , Microvasos/patologia , Microvasos/fisiopatologia , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fosforilação , Transporte Proteico , Transdução de Sinais , Vasodilatação
18.
Atherosclerosis ; 271: 156-165, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29518748

RESUMO

LPP3 is an integral membrane protein belonging to a family of enzymes (LPPs) that display broad substrate specificity and catalyse dephosphorylation of several lipid substrates, including lysophosphatidic acid and sphingosine-1-phosphate. In mammals, the LPP family consists of three enzymes named LPP1, LPP2 and LPP3, which are encoded by three independent genes, PLPP1, PLPP2 and PLPP3, respectively (formerly known as PPAP2A, PPAP2C, PPAP2B). These three enzymes, in vitro, do not seem to differ for catalytic activities and substrate preferences. However, in vivo targeted inactivation of the individual genes has indicated that the enzymes do not have overlapping functions and that LPP3, specifically, plays a crucial role in vascular development. In 2011, two genome-wide association studies have identified PLPP3 as a novel locus associated with coronary artery disease susceptibility. Shortly after these reports, tissue specific inactivation of PLPP3 in mice highlighted a specific role for LPP3 in vascular pathophysiology and, more recently, in atherosclerosis development. This review is aimed at providing an updated overview on the function of LPP3 in embryonic cardiovascular development and on the experimental and clinical evidences relating this enzyme to vascular cell functions and cardiovascular disease.


Assuntos
Doença da Artéria Coronariana/enzimologia , Vasos Coronários/enzimologia , Fosfatidato Fosfatase/metabolismo , Animais , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Humanos , Fosfatidato Fosfatase/química , Fosfatidato Fosfatase/genética , Polimorfismo Genético , Conformação Proteica , Fatores de Risco , Transdução de Sinais , Relação Estrutura-Atividade
19.
Am J Physiol Cell Physiol ; 314(6): C732-C740, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29513568

RESUMO

Coronary microvascular rarefaction, due to endothelial cell (EC) dysfunction, is one of the causes of increased morbidity and mortality in diabetes. Coronary ECs in diabetes are more apoptotic due partly to mitochondrial calcium overload. This study was designed to investigate the role of hexokinase 2 (HK2, an endogenous inhibitor of voltage-dependent anion channel) in coronary endothelial dysfunction in type 2 diabetes. We used mouse coronary ECs (MCECs) isolated from type 2 diabetic mice and human coronary ECs (HCECs) from type 2 diabetic patients to examine protein levels and mitochondrial function. ECs were more apoptotic and capillary density was lower in the left ventricle of diabetic mice than the control. MCECs from diabetic mice exhibited significant increase in mitochondrial Ca2+ concentration ([Ca2+]mito) compared with the control. Among several regulatory proteins for [Ca2+]mito, hexokinase 1 (HK1) and HK2 were significantly lower in MCECs from diabetic mice than control MCECs. We also found that the level of HK2 ubiquitination was higher in MCECs from diabetic mice than in control MCECs. In line with the data from MCECs, HCECs from diabetic patients showed lower HK2 protein levels than HCECs from nondiabetic patients. High-glucose treatment, but not high-fat treatment, significantly decreased HK2 protein levels in MCECs. HK2 overexpression in MCECs of diabetic mice not only lowered the level of [Ca2+]mito, but also reduced mitochondrial reactive oxygen species production toward the level seen in control MCECs. These data suggest that HK2 is a potential therapeutic target for coronary microvascular disease in diabetes by restoring mitochondrial function in coronary ECs.


Assuntos
Cálcio/metabolismo , Vasos Coronários/enzimologia , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Angiopatias Diabéticas/enzimologia , Células Endoteliais/enzimologia , Hexoquinase/metabolismo , Mitocôndrias/enzimologia , Animais , Apoptose , Glicemia/metabolismo , Vasos Coronários/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/patologia , Células Endoteliais/patologia , Hexoquinase/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação , Regulação para Cima
20.
Pharmacol Rep ; 70(1): 178-183, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29414148

RESUMO

BACKGROUND: Incretin analogue drugs, a FDA-approved treatment in diabetes, has been tested for its therapeutic properties as modulators of atherosclerosis. We investigated the effects of incretin drugs on the modulation of gene expression and protein levels of matrix metalloproteinases (MMPs) as well as their inhibitors - tissue inhibitors of metalloproteinases (TIMPs) in coronary artery smooth muscle cells (hCASMC) in the context of atherosclerotic plaque formation and inflammation. METHODS: TNFα-stimulated hCASMC were treated with Glucagon-like Peptide 1 (GLP-1) (10nM and 100nM) and Exendin-4 (1nM and 10nM). Messenger RNA (mRNA) levels and protein concentrations of MMP-1, MMP-2, MMP-9 and TIMP-1, TIMP-2 were measured and the effects on extracellular matrix turnover under TNFα-mediated microenvironment were evaluated. Intracellular signaling pathways were also examined. RESULTS: Our experiments reveal that GLP-1 receptor agonists downregulate the expression of MMP-1, MMP-2, MMP-9 in hCASMC under TNFα mediated inflammatory conditions. Signaling pathway analysis show that GLP-1 receptor agonists induced inhibition of AKT-Thr308 phosphorylation, PRAS40 and S6 proteins but not AKT-Ser473. CONCLUSIONS: These findings indicate that GLP-1 receptor agonists modulate the expression of MMPs through inhibition of AKT-Thr308 phosphorylation in hCASMC. These results suggest a possible role of incretin analogue drugs in therapy of coronary atherosclerosis.


Assuntos
Colagenases/metabolismo , Incretinas/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peçonhas/farmacologia , Células Cultivadas , Microambiente Celular , Colagenases/genética , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/enzimologia , Relação Dose-Resposta a Droga , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fosforilação , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...